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—

The theory of Lagrmgian m~~ltipliers is applied
to the problem of finding 3oth upper and lower limits to
the true compressive buckling stress of a clsx,pedrectan-
gular plate. The upper and lower Mmits thus bracket
the true stress, which cannot be exactly found by the
differential-equation approach. The procedure for obtaining
the upper limit, which is,believed to be new, presents “-— .

certain advantages over the classical Rayleigh-Ritz
method of finding upper lbits. The theory of the lower-
limit procedure has been given by E. Trefftz but, in the
present apj?licati.on,the method ~tfers from that of
Trefftz in a way that makes it inherently more quickly
convergent. It is expected that in other buckling
problems and in some vibration problems the La razigian
multiplier method of finding upper and lowsr 1% its nay - ‘--–
be advantageously applied to the-calculation of buckling
stresses and natural frequencies. 7-.—-.=

INTRODUCTION ,

lilanyimportant problems that cannot be exactly
solved by the differential-equation approach and must
therefore be analyzed b~ approximate rneth_odsarise in
the buckling and vibrations of thin plates. The theory
of Lagrangian multipliers can be a powerful tool in the
analysis of many of these problemsa The present paper

-—.—

presents the details of application as well as the
fundamental principles of the L~ra~i~ multiplier

d method by dem.castrating the use of the method to obtain
.

both upper and lower limits to the true compressive buck-
ling stress of a rectangular plate clamped along all edges.*
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The procedure for obtaining the lower limit is
similar to a method used hy Trefl%z (reference 1) and
recently descrfbed by E. Reissner (reference 2). The
present lower-limit method differs from that of Trefftz,
however, in a way that makes iti}+er~~tly more qu.fckly
convergent. The upper-limit procedure, which does not
appear to have been presented previously, is sh~pler tklan
the usual Rayleigh-RitZ method arid.may be expected to
permit the computation of more accurate results with less
labor.

i-
In a recent treatment of the problem 05-compress@e

/

buckling of clamped plates,extensive calculations of
lower limits were made by Levy (reference 3) by means of
a procedure equivalent to the Trefftz method. The results
were estiinatedby Levy to be-within 3.1 percent of thG true
results. In order to illustrate the methods of’the
present paper, upper and lower limits to the buckling
stress of a square ,plateare computed ta within 0.1 per-
cent of each other; a positive check on the accuracy of ‘
Levyls results is thus obtained, “.I

x

Y

—

SYMBOLS — #-

length of plate, in direction of stress

width of plate, perpendicu~ar t“~stress

aspect ratio (a/%)

thickness f.

Poissonfs ratio

Young~s modulus of elasticity

plate stiffness in bending
(12(3)

plate coordinate in.direction of stress

plate coordinate, perpendicular to direc- .*
tion of stress

plate buckling defamation, normal tr- *
plane of the plate

,
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CTx

lc ”--’-

V

T

%

br

r, s

%-m

(z,h,?Lj>Pi,Y

critical compressive stress, in x direc-
tion

–---critical compressive stress coefficient in

()

n2D
tiheformula, ax = k —

b2t

internal energy of-deformation

external work of applied stress

Fourier coefficient of

Four3.er coefficient of

Fourier coefficient of

even integers

odd integers

Kronecker delta (1 if

1
F

nmy
Cos —

a

a
nny% Cos —Cos

a b

. . ._a. —__

.—

m =n; O if m+n).- ,.-

Lagr.angian multipliers

THEORETICAL BACKGROUND

Rayleigh-Ritz method .- The Rayleigh-Ritz energy
method f’ordetermining the critical stress of a thin
plate consists of the following steps:

——..—___

(1) The deflection surface of the buckled-plate fi_
expressed- in expanded form as the sum of an infinite
set of functions having ti”d-eterminedc“oe”fficients”~In
general, each term of the expansi~ must satisfy the
geometrical bougndary conditions of the__problem. -.

(~) The energy of the lead-plate system is computed
for this deflection surface and is then minimized with
respect to the undetermined coefficients. —
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(3) ~hfs minimizi.w procedure leads to a set of
linear homogeneous equaiions in the undetermined coef-
ficients. These equations have nonvanishing solutions
only if the determinant of their coefficients vanishes.
The vanishing-of this stability determinant provides
the equation that may be solved.f’orthe buckling stress.

—
&

When the set of functions used is a complete set
capable of’representing the deflection, slope, and
curvature of any possible plate de~ormation, the solu-
tion obtatned is,in principle, exact. Since, however,
the exact stability determinant is usually infinite, a
finite determinant yielding approximate results is
used instead.

Lagrangian multiplier method.-
-.

The Lagrangian
multipli er method follows he general procedure outlined
for the Rayleigh-Ritz metho~, with but one outstanding
change . The restriction in step (1) that the boundary
conditions be satisfied by every term of the expsnsion
is discarded and is replaced by the condition that the
expansion as a whole satisfy the boundary condit-ions. &

This condition is mathematically satisfied in step (2),
during the minimization process, by the use of Lagrangian
multipliers.

2

The fundamental advantage of tileLagrangi.anmultiplier
method lies in the fact that~ with the rejection of the
necessity of the fulfillment of boundary conditions term
by term, the choice of an expansion is much less restricted.
In the clamped-plate compression problems a simple Fourier
expansion may be used instead of the complicated func-
tions assumed in the Rayleigh-Ritz analyses of this
problem (references 4 and 5), Furthermore, the orthogo-
nality properties o“fthe simple Fourier expansion lead
to energy expressions of a simplicity that is instrumental
in permitting accurate computations.

Approximate solutions of upper and lower llmits.-
The Lagrangian multiplier method, as well as the Raylelgh-
Ritz method, gives a theoretically exact solution for
the buckling stress; but ordinarily only approximate
results are obtained because of the practical QecessitY ,

of considering finite rather than infinite determinants.
In the Rayleigh-Rf.tz method the approximate result is

*

always higher than the true buckling stress. In the
Lagrangian multiplier method, however, it is possible to

.-
.

obtain approximate solutions in two different ways,
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wnich’perr.it the computation of a lower limit as well as
an upper limit to the true buckling stress. As deter-
minants of higher order are used to obtain approximations
of hi@er order, both the upper-limit and l~wer-limit
results approach the true buc~ing stress, Thus, the

.——

Lagrangian multiplier method can be used to grovide a
result to within any specified degree of accuracy. It
may be expected, furthermore, that a particular deter-
minant in the Lagrsngian multiplier method ought to

.—

yield a more accurate result than a determinant of equal
order in the Rayleigh-Ritz method.

LAGRANGIAN MULTIPLIERS

The procedure used in appl:ti.w the fundamental
mathematical principles of L@&g~an multipliers is
described in this seotion; a general proof of the

._—
r

validity of the method is giveil in the appendix.

L ..—

“L

-.

Let it be required to minimize a function of
variables

(fxl, x2, x5..*xN
)

where the X!g are not independent but are bound
together by the relationship

( )~xl, x2, X3 c ● ● XN = O

N
—-...-—

(1)

—
. —

(2)

Lagrange 1s method of simultaneously minimizing .4 ,”
and satisfying the constraining relationship (2) is to
minimize the function

f- ACQ

with respect to the Xfs. The quantity h is the
undetermined Lagrsngi.an multiplier, The necessary con-
ditions l?orminimizing f then become .—
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@ )pP_o, (It= 1,2, 3.. If)
CK - bx;<

~=o (equation (2))

Note that these expressions are N + 1 equations in
the N + 1 unknowns. ‘1’ ‘2’ ● “

,“~N and ~.

If there are.two relationships that constrain
the x~s; that is, if

—

H@ls ‘2 ● ‘ ● ‘IJ = 0

%(% X2 ● : ● XN) = o

two Lagrangian multipliers are
tion to be minimized becomes

f- h~v~ -

then needed.

%92

and the minimizing equations are

Cpl=o

‘?2=0

The method is easily extended to cover
any number of constraining relationships.

The func-

—

● 9* N) ““–-“- -.

the case of
—

PRELIMINMY ILLUSTRATIVE EXAYPIZ *

Before the main example is given, a simpler buckling .
problem will be analyzed by the Lagrangian multiplier
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method in order that the method of application of
Lagrsngian multipliers may be most clearly presented
without the obscuring details of analysis of more compli-
cated problems, This elementary problem requires the
use of but a single Lagrangian multiplier, which leads.—.
to a single stability equation.?...

Y

\ !/// ////////////=

-+ ‘ ‘a-l””’----““-
/,/

I~~~~~-E ‘“”‘“-”“-
ax . . .

3(=a)

- j

-=

// :/ x

. Consider a square plate, clsmped along two opposite
edges, simply supported along the other two edges, which
is loaded in compression on the simply supported edges.
(See sketch. ) From the exact solution of tlnisproblem,
the deflection surface of the plate is known to be sinus-
oidal in the x direction. The deflection in the
y direction, known to be symmetrical, must satisfy the ‘-
clamped-edge boundary conditions; that is, zero deflection,

.- —

W(x, o) = w(x, a) = O (3)

and zero slope :.

(4)

The present method uses a cosine-series expansion,
whereas the Tref’ftz-@ocedure would use a sine-series

. expansion, The problem is solved by both methods for
comparison.

.-
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Cosine-series solution .- In the cosine-series
solution the expansion

m
mm

w= sin —
a

%

~ Cos y

n=0,2, ...

(5)

may represent the deflection surface having m half- .,
waves in the x direction, since the Fourier series of
even cosines is a complete symmetrical set.

The boundary conditions (equation (4)) on the
are satisfied by-each term
order that w satisfy the
the edge deflection, it is

m

‘Y--rn=0,2, ...

of t~e expansion; however in
Coilditions of equation (3j on
necessary that

a = o
n (6)

e

Equation (6) is a constraining relationship on the ~1~ k
and as such will be introduced in Lagrsngets minimization

—
●

process,

As in the Rayleigh-Ritz method, the internal energy
of deformation and the external work of the stresses are
then calculated. Using the value for w as given
equation. (5) in the general formulas (reference 6,
equations (199) and (201)(modified))

by

(7)

(8)

*

—
.

—

Jo ,]0



gives

.=* ~ (m’+ .2)2(1+~On)a.’
~=0,2,4 ...

The usual Rayleigh-??itz procedure requires that the
expression .—.—

V-T (9)

be a minimum with respect to the a!s~ In the present
exsmple, however, tine alg are not independent but are
bound by equation (6)s Hence, mathematically stateds
the expression V - T must be a“minimum subject to the
constraint relationship on the ..als

.-

Cn

>. %-l=o (Equation (6))

n=O,~ ..O

P

Solving this minimization problem by Lagrange~s
method makes it necessary to minimize

(V-T)-h > an (lo)

n=O~l ...
—

with respect to the a~s. The necessary conditions for
a minimum then become

P



10

3’ ‘
\

/ )anb(V - T) n=0,2,J ...
daj -

=
?)Eij

o (j = 0,2,4...)

>
an=o

n=0,2.,4 ...
.

or, upon differentiation and simplification, d

, [2+F)2-+,+=0”” (1,)(1. + ~oj) (m

(j =(),.2,/+...)’

\

/
a =
n o (6)

n=O,~ ...

Solving equation (11) for aj ‘“and substituting into
equation (6) gives the stability equation that deter-
:~i~~e8 I&: .

j=oZ...[(m2+j2)2:m+aoj)=0“2)

FoY a particular number of half waves m, this
equation may be solved by evaluati%r the series for
several trial values of k and iilterpolat-ingto find “
the k that makes the series vanish. The correct value
of m is that which gives the lowest value of k. For
two half waves ’(m = 2) in the loaded direction, the



k ., theoretically exact value of k = 7969 (reference 6,
page 5M) is obtained when only ten terms of equation (12)
are computed. ...—

Sine-series solution (Trefftz method).- The same
problem will be treated in the nanner suggested by
E. Reissner (reference 2), which is similar to Trefftzls
method (reference 1). -

Let
w

x
—--—-

W=
mnx

sin ~ br sin ~ (13)

r=l,3,5 ~e. —— .
--..—

v

The botidary conditions on deflection (equation (3))
are now satisfied term by term, but Lhe conditions on the
edge slopes (equation(4)) are satisfied only by making “

.,-—
.

Y_ ‘br=Q (14-)
-

r=l,3,~ ..s

Now, the expression V - T is computed frmm
formulas (7) and (8) by using tb.evalue of w’ given -
by equation (15); then, by application of La@ange~S
procedure,

. ____-.
,. -.

m

1
(V-T)-y rbr (15)

r=l,3,5 ...

.—

&..-

must be minimized with respect to b~ (s = 1, 3, 5, . . ,)
The Lagrangian multiplier is y.

—— ——

The minimization equations are

~m2 + S2)2 - mzk]b -~
4s #D ‘s

=o”(s=I,3,5, ~.* )(16)--”.

m

2- rbr = O
—.

r=l,J,5 ...
--

-.—.
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t

lSolvirlequation (16) for b and substituting in
equation (2 ) gives as the stabil!ty equation

w

T ~2
= o (17)

/’---- ( )’
m2+g2d. m2k

S=l,3,5 .,8

1103 - t

Cofilparison.and discussion of results-- The series.
in equation (17) converges approximately as 1/s2, ‘
whereas the se fes in equat-i.o.n(12) converges approxi-
mately as l\jF. Because of the more rapid convergence
obtained in the stability equation, the Lagrangian

.

multiplier me~”hod is preferably used to satisfy the zero-
def’lection condition rather than the zero~s~ope co~ditign.
Slope is the derivat-.ve of deflection, and, in general,
differentiation of a series makes it more slowly con-
vergent.

THE COMPRESSIVE BUCKLING OF A RECTA.NGUIAR FL4TE

CLAMP”Q ALONG ALL EDGES .

The previous elementary example required only a
simple Fourier expansion and but one Lagrangian multiplier
to satisfy the boundary conditions. The more difficult
problem of finding the buckling stress of the rectangular
plate clamped on all edges and loaded as shown in the
accompanying sketch necessitates a dou”oleFourier series,
as well as an infinite set of Lagrangian multipliers to .
satisfy the boundary conditlons~ --

-.

-k’ “:”-+j
Y

. ,/ // ,’/ “+-
/ ./”

a /

g

b 2
4-- CYx
/

7
—.. /-

-3,) ‘,/{,,,,,,,,,,,,, 5
/

.: , x

—
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Boundary conditions .- The boundary conditions of
the problem are :

—

Zero deflection, loaded edges

W(o,y) = w(a,y) =.O_.. ._. (18)

Zero deflection, unloaded edges

W(x, o) = w(x,b) = O (19)

Zero slope, loaded edges

&(O,y) =~(a, y) = O (20)

Zero slope, unloaded edges

$(X, O) = ~(x,b) = O (21)

J?ourier ex~ans ions .- Ig order to achieve a rapidly
converszent solution. the rminciples established by the
preced~ng exsmple a~e used as tilebasis for,choosing the
Fourier exwmsions to satisf’~, term by te~, the condi-
tions of zero slope rather t&n those- of zer,odeflection.

The buckling deformation corresponding to the lowest
buckling stress is always symmetrical perpendicular to
the direction of load but, depending m. the aspect ratio
of the plate, may be symmetrical or antisymmetrical in

J the direction of load. Thus , for symmetrical buckling,
let

.

and, for antisymnetrical buckling, let

(22)

(23)

.-

.—

.-

.—

.—

—— —-

—

.



It is sufficient, for pwposes of .dernons$~ati.on,
to consider only the case of symmetrical buckling.
Hereinafter, w therefore refers to the value given
by equation (22).

Energy expressions.- Using the ?xpansion given by
equation (22)’in the”evaluation of the general energy
and.work integrals of equations (7) and (8) gives

~ #Db

= ‘.=0>... n~,=oo. ‘m’ + ‘2’2)2(’+ 6“0 + ‘OJ am”’

#axtb \&”
T=—

8a /4e*on=o~ ‘2(1+ 60J~n2
m=0,2, >> ● **

Then

TADV- +=-.-J ‘r- f--
/8a3 ~_. .—

m=0,2,4 ..O n=O~2,4_ ft.

where

[(& -mz )’22
+np-

Am = ](
M2 p’ 1 + ~mo + 50n

)

(24)

Note that V - T is independent of
aoo’

since
1—= o.

’00

Constraining relations The boundary conditions
Of’ zero slone (eauations (2 and (21)) are sat-lsfied
by each term-of-tie expsnsion”of 6quat~cn (22)$ but the
conditions on deflection (equations (l&) and (19)) must
be satisfied by the expansion as .8whole. Substituting, w
into equation (18) gives, along the loaded edges,

●✌

✎

.

*

—

.
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.

w(O,y) = w(a,y)

-v.

b > %2
-m=Oj~ ...

+ Cos

%

MZ” W.
b

m=0,2, ● D*

al

%

+COSQQ –
b %6+=”’

m=0,2, ,..

.

.—

.— .

-. -.

-.

Since this Fourier series must vanish, each infinite
series that constitutes a coefficient of a cosine term
must vanish. (A11othe Fourf.er coefficients .of the
Fourier expsnsion of the function zero are zero.) Hence” ‘-

>. %j=o (j=o,2,4 ...) (25)

m=O,~ ...

By expressing the fact that there is zero deflection . _
along the unloaded edges (equation (19)), it can be
similarly shown that ..—

co

> *in = 0 (i= Cl,2,4 ..0”) (26)

n=O,”~ ...

I“row,v - T must be a minimum with respect to
the ats, which are bound by equations (25) and (26):
As the problem now stands, however, it is not in the .

form to which Lagrangels minimization process can be ..
applied since V - T does not contain aoo, whereas ““-””-—‘“”



the constraint relationships do contain aOC. Hence,

Roo 1s eliminated from the constraint relationships by
subtracting the first of--equations (26), ‘theequation
for i = o, from the first of equations (25), the equa-
tion for ~ O*R The final set of necessary constraining
relationships on the minimization of the energy expres-
sion (~)

then becomes

T +-
%0 -

f%

aon = O

m=2,J~ .., n=2, , ... 1
co.—.

>. %nj

~ -i

=o(j =2,4,6 ...)

m=0,7ZJj ..4

-\:
ain =o(i=2,4,6 ...)

n=o:22 .*.

Theory of upper and lower limit solutions.- A
theoretically exact solution to ti= ~roblem would be

*
.

.

(’3’)
.

—

..—

—.

—

obtained if the energy expression (e~uation (~)) were
minimized with respect to all the a!s and at the same
time all the

—
relationships (27) were satisfied. This

result follows from the facts that: (a) the expansion
of equation (22) is a complete symmetrical ~et, capable
of representing the exact symmetrical buckling deforma-
tion, and (b) the fulfillment of the conditions of
equations (27) ensures that the boundary conditions are
completely satisfied, An exact solution is not possible,
however, because it would involve an infinite determinant,
so that two cliff-e-rentmodifications of the ideal pro-

*

cedure are used to obtain approximate results. One of
these methods gives an upper li.mit.tothe true buckling
stress, whereas the other gives a lower limit.

T
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.

.
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An upper limit to the buckling stress can be found
by arbitrarily setting some ~ls equal to zero,
minimizing expression (2)4)with respect to the remaini~
a~s, and satisfying all the constraint relationships (27).
An upper limit is obtained inasmuch as arbitrarily setting
s~~e of tie Fourier coefficients equal to zero has the

effect of restraining the deflection of the plate, which
in effect stiffens the interior of the plate and increases_
the stress requined to buckle it.

A lower limit to the buckling stress csn be found by
minimizing expression (~) with respect to all the afs
but satisfying only some of the constraining relation- “ “
ships (27). Neglecting some of the constraining rela-
tionships has the effect of’giving the plate greater
freedom at the edges and hence reducing the stress
required to buckle the plate.

Lower limit solution.- In accordance with the require-
ments for a lower limit, the constraining relation-
ships (27) will be satisfied only Up to j = q and
i=p. By Lagrange!s minimization process, the function
to be minimized is then

,P

/-7 vi ‘L- ain

i=2, , -.. . n=0,2,~ ...

.

—

.-, .—

—.—

-. .—
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The a, ‘2 “ “ ‘ ~qz ~2 ● ● * up. are Lagr-i~
.

multipliers . The .~quations ~orminimiz~ng V---T w}th
the canstrain”ing relationships (27) on the &!g then

—

becmm .-J.

bG_o—.
h~n

Equations (27)

Evaluation of 6G\t)~n

(m, n =

I

o, 2, 4. , . .)

j

..

gives

-%o)”~n-um=o (29)
— ~ .-

where An appears anly_if 2 ~.n.~..q ax ~ appears
-.

b

only if Z<rn<ps From equation (29)

1 0~p+d,q+e = (d, e = ~> 4, 6 ● ● .)
‘p+d,q+e .- -—.. .

Hence for any particular d, e, either

Q r

1 = o
‘p+d,q+e

ap+d.)q+e = ~

The first alternative, however, ordinarily would
require ktob
buckling stress
both directions.

e
o

very high, c6rrespondir@ to.the
f a buckling mode with rnayLywaves
For the lowest buckling load, the

In
n,

.—

.-.

9

% +d,q+e = o (d, e * .2, 4, 6 ● . .) —
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?

It is therefore necessary to be concerned with only the
other als, which, from equation (29), are

3
~on = )1-k~on(.a+hA n

Gb , —

In equations (~0), An does not ar@ea~ if’.v >.~ and pm
does not appear if m > p.

Substituting the values OF a~s given by equation (30)
back into tineconstraining relationships (27) up to
j = q, i = p gives

a~~+z+z:a’z;~”c~:;n=j ‘“’””-’:
P m—-

‘%ja + > ‘~j~~ “j

k

A =0
I

mj

iiii 6... In ,Zi+.., \ (31)

(j=2,4,6. ..q) I

Ca.—

) \+-
+*U + vi A. +m

4-

‘i$n = 0

n+,2,4... n=a, !,6...

J(i=2,4,6. ..p) ,

These equations form a set of *(p + q) + 1 linear

homogeneous equations in a, W2 . . . pp, ?12 . . ● Aq.
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Since when buckling occurs the ~lg are not qll -zero,
by equation (30), the La~ran@.an .uulti.plier s.auenot all s

zero. In order that equations (31) be compatible, the
. .

determinant of the coefficients .otthe Lagrangian
multipliers must vanish~ The vanishing of this stabillty
determinant provides the determinantal equation that may
be eolved for k by substitution of trial values and
interpolation.

That certain elements of the determinant consist —

of an infinite series of
%

terms is evident; these
series converge rapidly. S ~ce such rap-idly convergent
series are calculable to any degree of accuracy, they
may be considered as known quantities.
of ~ represents

Each value
the potential-energy.contribution

of a term in the expansion for w; hence, the eff’ects
of infinite subsets of expansion terms enter into this
Soltltion. Thus , for p=q= 2, the expansion terms
corresponding to the ~fg shown in figure 1 enter into
the solution; similarly, the terms represented in
fi~ure 2 enter into the solution.when p = q = 4. *

Upper-limit solutlon.- The lovjer-limit solution
satis~ied only some.of he constraining relationships (27) . .
but assumed the existence of all the F&rier coeffi~ientg,
If an upper limit is to be obtained, it will be necessary
to satisfy all the constraining relationships while
arbitrarily assuming some als to be zero.

As a direct result of the necessity of’satisfying
all the constraining relationships in the upper-limit
solution, it--isfound that the first of equations (27) LS

redundant and may be discarded, since it is automatically
satisfied when all the remaining equations (27) are
satisfie~,. As a proof of this redundancy, the conditions

‘+---

are summed over j and subtracted from the sum of the
conditions -.

?
m

.

\

/
ain =

-o (j.i 2,4, 6...) !,

n=~k. ..
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.
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over i and give

m
“r”— ‘“

m

&

ain - ‘N, \~ amj = O
i=’F<~6 ● ,. n70,2, ... j=5~6. .. %nl=o,2,-...

Sim~lifylng this squat ion

.~ m

\ aio -
z

aoj =0
,/

I=2Z. ., F2, $,6...

which. is preeisel~ the first d eiq-dations (27).

It IS to ‘ie emphasized that tinered~d~tiy “of’-a
constraining relationship is a peculiarity of only the
upper-ltiit solut~on, since, as shown by the proofgive-n,
the redundancy depends on the fact tlzatall the con-
straining relationships must be satisfied. .

With the elimination of the redundant conditio-n,
the necessary constraint relationshi~s become”

a

L
amj=o (j=2JkJ0aJ (52)

. ...

-.

—

.-

.
IE=0,2,4...

03,—

h afn = O (i = 2,4,6...) (33)
n=0,2, I...

At this point, in accordance with up~er-limit theory-
it is necessary arbitrarily to set certain a!s equal to
zero. It is nossible to take advantage of the Lagrangisn
multiplier method by allowing infinite rather than ~inite
sets of afs to exist and still to obtain a stability
determinant of finite order. ~~lJs, inflnit.e strips of
coefficients of the type shown in ~i~ures 1 and ~ can
enter into the solution. In the lower-limit case, the
existence of all coefficients was assumed, but the coef-
ficients ap+d,q+e were p-roved.to be zero; in this

-.



,.

upper-limit soluttufi, tt will he arbit~arily assumed
that these same afs are zero; thus

T
.

ap+d,q+e =

The constraining
w

7 %lj=o
,

m=0,2,~.. *

c1 (d, e = 2, &.,6...)

relationships (52) and (33) become

(j =2,1~.,6. .iq)

P_

7 %j=o .(j =q+-2:q+~., . ..~)

2_ ain = 0
(i.= p+2, p + );, . , ●“” w)

n=Q,2,!~... ..

(32a)
— —

—

(53a) *
-.

L amj ‘

m= , +...
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The first double summation of this equation extends over
cmlv the values of m and n such that --

Setting dG
— = O then gives, for all the ~1~ .arbi-
d~

trarily allowed to exist,

where Lo snd W. do not exist. Substituting back into —

the constraint equations (32a), (32b), (33a),and (33b) gives
.——

+----
Aj 2- %lj

m=o,2,3**0

w

,q

+“ — ---———
+

}
A-@Pm =O(j!= Z, .4, 6 s . . q)(fi)

m~~6. .. .

., P

‘ J ~jPm=O(j
=q+2, q+4. .,d3@)

%-m= , ,6...

--4n=0,2, ...

>’ &Ain~n + Vi” Ain= O (i = p + 2, p +4 coocd(35b)

n=2,L,6..S n=0,2, ... .-
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These equations involve all the Lagrangian multi-
pliflrs● They can be reduced-to a set of equations,
however, in h2 . . . Aq,

~2”*. ..p? v in t-hefollowing
manner:

From equation (55b), for i = p + 2, p

q
.— .

-> ‘inLn

From equation (34b), for j = q + 21 q + 4.
P.—

‘\.
“%njkm

‘j =+’--
“V@
m=O .-

Substituting these expressions for V4 and

m
,“—.

> %j
c._.

m=0,2,J+...

+4 **9

+ ‘%j
/

m=~kk ..

pm- =0

D (j = 2, A, 6. . .q)
L

L
\.—..,Jkdl:?

m

Y

--

m=2~6. .~ \

/“ ‘in ~-
n=q+28q+J+...

>
%m

m~-07”~L...

equations (j.~a) and (35a), respect ive~y, givesJas the
final stability equations: \

[~ I

P .-/1 \
&’

co

m

\
+ Pi “’

/
‘in = 0

(i = 2,}.k,6...P)

..

●

—

‘.

(36)
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linear~quations (36) form a set of ;(P + q)

homogeneous equations in ~2. ..~q, P+p. .+p.

The stability determinant is the determinant or the
coef’f’icientsof the ~!s and VT9.

It is of interest to note that h the usual
P,ayleigh-Ritz solutions only finite sets of expansion
terms are ever taken into account, and tho order of the
determinant obtained is ordinarily equal to the number of

——

terms consi~ered. It’ is then reasonable that a particular
determinant obtained by the Lag&arigianmultiplier mthod,
which considers infinitely more expansioh terms than a
RayleiSh-Ritz determinant of equal order, may be expected
to give a more accurate result.

Numerical example~- For the case of a square plat8,

!3 1,= upper and lower limits were computed. The
results for the buckling-stress coefficient k wetie:

I 1
Approximation I Lower limit I Upper limit

First; p = q = 2
Second; p = q =4

9.99 10*11
m. 07 10.08

. —

The expectation th_at_the Lagrangian multiplier
method should give closer upper limits than the Rayleigh-
Ritz method, for a given_-order determinant can be con-
firmed for this example. A second-order Lagr~gi~

.-J—

multiplier determinant gives an upper limit of
—— ...—.

k= 10.11, whereas hlaulbetsch (reference 4) and Smith
(reference 5) use complicated deflection functions in
the Rayleigh-Ritz method to derive third-order deter-
minants that “give, respectively, k = 10.48 and
k= 19.11.

. It is seen that the second approximation, requiring
the evaluation of a fourth-order determinant for the
upper limit and a fifth-order determinant for the lower
limit, definitely establishes linevalue of k to within
0.1 percent.

s Levy (reference 3) used an ingenious method of
obtaining lower limits that is, in facts Equivalent to

----

the Trefftz method of using double sine series and
*- satisfying the zero edge-slope condition by the

Lagrangian multiplier method. On the basis of corn- “- ‘-- -
putati.ons involving determinants up to order tw6nty,

,



Levy concluded that his results obtained from tenth-
order determinants are within 0.1 percent of the true
results. Tnasmuch as Levy obtained k = 10,074. for the
square nlate, the present relatively simple uuper- and
Iower-limft calculations show that his estimated limit
of error is correct for this case.

CONCLUSIONS

1. The Lagrangian multiplier method can be used to
compute accurate upper and lower.limits to the compressive
buckling stress of a olamped rectan~ular plate, tlnereby
bracketing the truo result.

..

2. From a consideration of rapid-ity of ‘co”n-vergence
toward the exact s~luti.cmin clamped-plate problems, it
is preferable to use sinexpansion that satisfies the
zero-slope boundary conditions term by term rather than

.-

the zero-deflection boundary conditions.
●

3. .Z!ecauseof the fact that the Lagrangian multiplier
method permits the effects of infinite subsets o& expansion i ..
terms to enter into the solution, it is believed that a
particular stability determinant florivedby the LaGrangian
multiplier method will, in general, yield a closer upper
limit than that obtained from a determinant of equal
order in the Rayleigh.-Ritz method, —.

4, It is expected that the method of Lagrangian
multipliers may be useful. in the analysis of...othersta-
bility and vibration”problems, In particular, the method
may be Immediately applied to the determination of
vibration frequencies of clamped plates, and to the
determination of_’~~~cklin.~stresses “of clamped plates
wader compression i~.two directions,

Langley Nemorial Aeronautical Laboratory
National f~dvisory Committee for Aeronautics

Langley Field, Vs., hlay3, 191~6
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n’
,

where the N XtS are bound by the P independent
relationships (p <N) — .—

~J@~ )
X2, X3. .. XN (J=’ lS2~3..OP) (M)

It will be proved that the equations for determiniw
the.minimizing values of the x rs are:

(A~) __ _
-.

gJ(xl, x2, x3 . . . xN) = O (equation (A2)) ..

(J= 1,2, 300. P)

The AIs are Lagrangi~ mult~pl~;~~; these (1?+ P)
equations determine N XTS and

If the.values of only (K - P) x~s arc known,
the remaining P X!S are determined from the P rela-
tionships (A2). For convenience, consider the last
P Xfs in equation [Al) to be dependent upon the
first (N - l?) XIS. Then, for f to be a minimuni
its first partial derivatives with respect to the
independent x~s must vanish, or:

. ..
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(.hl= 1,2,30.:(N- P)(A4)

But each of these equations contains P quantities
that cannot be directly evaluated - the derivatives of
the dependent variables with respect to the independent
variables, For each vall~eof h!, these P derivatives
are determined by tlifferantiattng each of the P con-
straint relationships (A2] with respect to x~l. Thus,

‘QJ bxN =-~
+.**+—— (J = 1;2, 3 * , . P) (A5)-

bxN h]~

Now, for each particular value of M, eqy$t~~ ~(& )
and the P equations (A~) make up a set of
linear henogeneous .oquatiionsin the (P + 1) quantities 1,
bx N-P+l ?)XN-P+2 axN _-.

—? —s?**- ? Slilcethese quantities

i3xM bxM t)xM

are surely not all zero, the determinant of--theircoef-
ficients must vanish, Hence, ~~ is found that for f’ d

ta be a minimum it must necessarily be true that!
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*

.

* ‘

b ,

.

ihp~ aq”p
g ‘XN-P+l

It will now be
tlon equations

bf bf
● —

ax “ “ bxNN-P+2

=0 (A6)

(M = 1,2,3 . i .(N- P))

. .- .,.

demonstrated that these necessary minimiza-
will hold if equations (A3] hold- Inter-

changing the rows and columns of the determinant in
equation (A6) gives:

~xl~-p+2 ‘xN-p+2 axN-P+2 bx
N-P+2

a b . .

● ☛ ✎ ✎

= o (A7)

(1{1=1,2,3...(N-P))
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The vanishing of’this determinant is, however, precisely
the condition of compatibility of the equations

when they are considered as linear homogeneous equations
i.nthe quantities 1, Al, ~2, . . . hp.

Since a determinant (A7) exists for each value
of M up to (N - P), a set of equations (A8) exists
for each M. It is seen that In these sets only tlie
first equation varie~, since only the first equa’tion
depends upon N. Observation shows that-all the
(17- P) determinants of equation (A7) can be derived
from the set of’ N equations

(K = 1, 2, 3 ● s ● N)

by successively writing the determinants of compatibility
of the last P equations with each of’the first (N - P)



8
.

.

II’
A

equations in turn, It has thus been proven that if
equations (A3) are true, the minimizing equation (A6), ‘-
equivalent to equations (A7), must hold.

It ~S seen, ‘n~wever, that equations (As) are
N equations in~ ~~g + P) un’lmowns consisting Or
N Xfs and The remaining necessary P equa-

-.——

tions come from the”original equations of-constraint (A2).
Hence, the simultaneous equations (A2) and(A3)

t)cpl ap2 ~9p& + L1— + A2— +..”” — = O (equation (A3])
bx’K bxK dxx ●+!% _.._ - . . .. . -_n”—

(K=1,2,3. ..N)

)~J@lS ‘2S,X3 “ “ ● ‘~ = 0 (equation (A2))

d (J=1,2,3. ..P)

are necessary equations for the minimization of

( )
f xl, X2, X3 ● ● ● xl~y which was to be ~roved.
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Figs. 1, 2.
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Figure l.- Four infinite strips @ Fourier coefficients
of expansion terms.
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Figure 2.- Six infinite strips of Fourier coefficients
of expansion terms.
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